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1. Introduction. The Cauchy problem for linear evolution equations and systems
of equation of the arbitrary order have been a subject of a practically infinite num-
ber of papers. They contain important different information as about the unigness and
vell-posedness of Cauchy problem for equations of different structure and type as about
gualitative properties of the solutions of this problem.

The talk mainly concentrates on the discussion of certain concrete questions about this
exstensive now sufficiently traditional, but still attractive region of investigation. We
consider:

1. The classical Cauchy problem for parabolic equations form

p(t,z) O = a;; (t, ) Oz, 05,u + bi (t, z) Op;u + ¢ (t, 2) u, (1)
(t,z) € Sr = (0,T] x R™, ult=0 = wo (z),z € R™. (2)
2. The generalized (u(t,z) € Wz,f:;:;bc (St)) Cauchy problem (2) for parabolic equations
with divergent stractur form
p () Ou = 8,; (i (t,2) Bzyu + ai (¢, x)w) + b; (£, 2) Ozyu + c(t,z) u (3)
3. The weak (u(t,z) € L joc (S7)) Cauchy problem.(Z) for systems form
O (p (t,z) u) = 8,0,; (ai; (t,z) u) — Oy, (bi (t,z) u) + c(t, z)u, (4)

where p (t,2), a;; (t,2), 4,5 =1,...,n, b (¢, ), = 1,...,n, c(, z)- are square matrix -
functions of the order N.
Everywhere repeated indices mean summation over these indices.

The satisfaction of the initial data in generalized Cauchy problem (3)-(2) and weak
Cauchy problem (4)-(2) is understood in the natural topology.

We study how the behaviour of the function p for large z influences the uniqueness .
classes of the problems (1)-(2) and (3)-(2) the behaviour of the matrix p for large z
‘influences the triviality classes of weak positive solutions of the systems (4), which are
constructed by initial zero data. Let us remind, that some of the class functions is called
trivial, if it does not contain functions, which differ from almost equal zero everywhere.

2. Energy estimations of the solutions of parabolic equations with divergent
structure and their applications. We investigate the generalized solutions u (t,z)
from

0,1

W, 4w 10c (ST) equation (3). The following assumptions will be made:

(H;) The coefficients of equation (3) are measurable in St functions

Iu > 1: 7 < a0y (t,2) &6 <’ VE € R,V (t,) € S, (5)

E=+..+8&, a;(t2z)=a;(tz),V(t2) € Sr.
ST



For some'q, g € (o0, 0o}, there exists positive constant Cy and M > 1 such that
pt,2) > Gy (142771, - ()

o) I (0 < M4 e <M. ()

The obtaining of the energy estimations is fulfilled in two steps. On first original equation
is transformed so that the new equation in the sufficiently narrow layer, appears to be
dissipative. Then for the solutions of the transformed equation it is established the apriory
estimation of the energy form.

We introduce the function:

-~Cy {1+ xz)qf'?
x[2(s —n) — (¢t —n)]

- LEMMA 1. The condition Hy is hold, u(t,x) is the generalised solution of the equations
(3) in S7.
Then function

Ht,z)= A<np<ct<s<T, x>0 (8)

v{t,s)=ult,z)exp H (L,z)
satisfies to the equation
pl{z) 8w = 0y, (agj (t,x)Op;v + A (t,m}v) + Bi(t,z) Jpv + C {8, 2)v (9)
in Siq = (¢, 8] x R*. And elso if

X 2 max (SG?zpzquz, (3u+1) 2]%»«1{(12)_, s—1n< g%(lgl, (10)
then the coefficients A; (t,z), B; (£,%), i = 1,...,n, C (¢, ) satisfy to the inequality
2;:2 ; (t,2) — A,ta:)) +C{tz) +22A‘2t$ (11)

=1

Tize proof of the lemma cousists of the calculation of the new coefficients A;, B;, i =
1, C' and of the proof of the correctness of the basic inequalites {11) (by means of

(5) (7))-

We pass to the obtaining of the energy estimates of t}ze genera.hzed solutions v (£, z) of
the equation (9).

Let £ (z, R) is the function, which has the following properties: ¢(z,R) € C& (R"),
0<E(=B) <L, (R <L E(zR)=1at o] <R, {{z,R)=0at |z| > R+ 2.

Obtaining of the energy estimations starting with notation of the integral identity for
solutions of equation (9) in which the test function is defined in the form :

v(t,2)¢{z, R)Q (4,2),Q (4, 3) = exp (2H (¢,2)}.
Consequent transformation and estimations result in the following statment: |
THEOREM 1. Let coefficients of equation (9) satisfy to the condition (5}, (6), (11) in Sy -

_and fulfill to the mequahty (10). Then for any generalszed solut:on v(, 2} of the equation -
{9) there is valid apriori estimation

1/2 [ pr*€Qdzll +-—- dt Z(b‘s‘v E’de
o J4[%
<@+ [a | ?’i(az.-ﬁ)szz,nﬁtzstzis- | (12)

Re
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- The immediate sequence of the theorem 1 is

THEOREM 2. Let.coe_fﬁczente of the equation (3) satisfy to the condition H; and parametrs
of the function H (t,2) — to the condition (10). Then in any layer {0 <n<t<s<T} x
R for getzemlmed eolutwm of the equation {3) an apmom estimation

1/2 [ pu?Q%dzf? < (B +1) [ dt u”'Zwﬁe)’dez, (13)
/ Ja]<%e. _

<t < <s
18 valid.

Apriori estimations (13} is an inequality of the type integral maximum principle. From
it we obtain this principle by limiting transition under furtner supposxtzon about behavior
of the u (¢, z) at |2] = oo.

Let us pass to the consideration of the uniqueness theorem of the problem (3)-(2).

We introduce Hilbert space L, {Sr; ¢, A} , ¢ and X some real numbers, function, which
are deternined m St for which norm

T
fwi gl = [ dt [ hot, o) exp {~22Jel"} do
o6 Re '
is finite.
THEOREM 3. Let condition H, is valid. Then the problem (3)-{2) has:
1. {a) Atg>0- unigueness solution u(t,z} € L2(St;q,A) at any positive A;
(b) At ¢ < 0- uniqueness solution u(f,z}-€ L2 (Sr;¢,0). :

Proof of the theorem 3 is based on the inequality {13). From (13) with the suppostions
a) and b}, and properties of the function { (z, R) it follows that {at R -+ oo} integral
maximumn principle

/ o (3, 2) exp {~2AJe '} do < (34 + 1) x / p(2) 4 (t1, 2) exp {~2Ae?} do,  (14)

R | . Rn :

1 <ty <ty <3, s satisfyes to the inequality (10) and at ¢ > 0, s < I3,

Sufficiently it is enough to prove, that from uo (z) =0 and u (2,2} € Ly (S1;¢,A) from
g>0, x>0 u(t,z) € Ly(Sr;q,0) from ¢ < 0 it follows that u (¢, z) is equal to zero.
.almost everywhere in Sr. From inequality it follows that if uo (z) = 0, then u(t,x) = 0,
Vi,0<t<s. Hs<T then with sames the argument as above in any Zayea:s s < t < 23,

2 <t<3sie
In the case ¢ = 0 theorem 3 can be changed to a stronger statement.

THEOREM 4. The following assumptions wille be made: _
(H) The coefficients of equation (3) are measurable in Sp funictions,

| 0 TFu> 1 M S eyt 2) 66 < pe, VEER™, Y(E2) € Sy
There exists positive constants C; and M > 1 such that
plt,z) > Ci(1+ :1:2)“1 , e (g, 2), 1 (3, 2) < M (1 + 2)“1"2111 (3+2%,

e(t,z) S M(1 +z3)“12n2 (3+2%).
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Then any solutions u (t,z) of the generalized Cauchy problem (3) — (20), for which
- :

/dt / lu(t, z)|* exp {-Aln* (3 +2%)} dz < +o0,
0 Re
with some positive constant A, is equal to zero almost everywhere in St.

Proof of theorem 4 is carried out according to the above-described scheme with H ((¢, z)
replaced by the function

_ Clh12(3+332)
x[2(s—n)—(t—n)]

3. The unigness classes classical Cauchy problem. We investigate classic
solutions of the Cauchy problem

p(t,z)0u = P(t,z;0:)u = ai;(t, 2)0:,0:;u + bi(t, z)0z,u + c(t, z)u, (15)
(t,z) € St =(0,T]x R", u|t=0 = uo(z). z € R". (16)

The problem (15), (16) with zero initial data will be denoted by (15). (160).
The following assumption will be made:

(H,): The coefficients of equation (15) are continuons functions in Sy = [0.T] x R™,
a;;(t,z)€i€; > 0, (¢,z) € S1,V€ = (&1,...6x) € R*\ {0},
a;;(t,z) € Lw(gr],p(t,lf) >0in Sr.

We describe the classes of equations of form (15) for which uniqueness theorems of the
Cauchy problem are established.

We consider pairs of positive functions A(r) and B(r) which are defined on [2, 00) and
suppose that B(r) has the following properties:

Q. B(r) > 1,|B(r)] > MA(r)*r 2, B(r) 1 o0 as 7 — o,
ay. B(r) has two derivatives and satisfies the following estimates:

|BO(r)] < MB(r)2A(r)"1=1,2
We bring two concrete examples of classes of functions satisfying these conditions.
EXAMPLE 1.
Apa (r) = AP ()2,
Bpy(r) = Bri(lnr)”,4> 0,p > 0.
EXAMPLE 2. £ :
Ay (r) = Ar (lnr)?'?,

B,(r)=B(lnr)**,p€0,1].

DEFINITION 1. Equation (15) belongs to the class (A, B) if its coefficients satisfy the
conditions:

p(t,z) > MA(r)?, rP=zi+.. +zi+2
b; (¢, z)z: < Mr (B (r))"? A(r)?,
c(t,z) <MB(r)A(r)”? in Sr.

The main result is the following
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THEOREM 5. Assume that equation {15) belongs to the class (A, B) and that conditions
H hold. Then any solution u(t,z) of the problem (15), (160} for which

lu(t,e)| £ Kexp{kB(r}}
with some positive constants K and k, is identically equal to zero in Sr.

The proof uses the maximum principle for solutions of eqaution (15) and the fact that
the function

F(t,z) =exp{EB (r) (1 + Qt)}
for equations of the class (4, B) is a supersolution of equation (15) for any E > 0 and a
suitable value of the positive constant Q = Q(E), i.e. pb,F — P (t,z;8) F > 0 in Sr.

Now we give some corollaries from theorem 5 for concrete functions A{r) and B(r) from
the examples 1 and 2.

COROLLARY 1. Let conditions Hy hold and assume that for some p,q,q > 0,p > 0,
p(t,z) > Mrv? (ur)?,

Bi{t,z)a; < Mri{lnr)’,

e(t,z) < Mr™ 72 (Inr)*,
Then any solution u(t,z) of the problem (15), (165}, such that
[u(t,2) | < K exp {kr? (17"}
with some positive constanls K and k, is identically equal to zero in Sp.

COROLLARY 2. Let condition Hy hold and assume that for some p € [0, 1]
p(t,z) > Mr=? (lur)"?,

hi{t,z)z < M(lnr)'™?,

e{t,z) € Mr=2 (lnr0P,
Then any solution u(t,z) of the Cauchy problem (15), (165), such that

lu(t,z)]| < Kexp_{k(hw){z;.p)}

in Sy with some positive constants K and k, is identica’ffy equal to zero in Sr.

4. The triviality classes of weak posxtzve solutions problem Cauchy Now we
consider positive solutions u(¢,z) for the weak Canchy problem of the form:

8 (p(t,2)u) = P* (t,2;0:)u : _ | .
= Oy, 33,- {ai; (¢, =) u) — O, (bt {t, 3).”') +clt, z)u, t 3’) € 57, (17)
ule=o = wuo(z),z € " (18)

Here u(t,z) = (ua{t,z),...,un(f,2)) is a complexivalued vector-function p(¢,z), -

ai;(t, %), bi{t,z), c{t,z) are square matrix -functions of order N with compiex~vained
elements defined in Sr.

By a weak Cauchy problem we mean, as usual, the problem of ﬁmim,g a weak soltx%;lon
of system {17 in ST satisfying the initial condition (18) in the weak sense.

By positiveness of a solution u(¢,z) in Sr we mean that its range of values belongs to
a given cone C of the space CV for almost ail (t,2) € Sr.



To formulate conditions hmposed on the coefficients of system (17) we again use the
functions A(r) and B{r) supposing, in addition to a;, a, that B{r) has the following
properties:
as. 1B'(r}ir 2 M for sufficeintly large r.
ay. For some ¢, r"Hexp{~cB(r}} ~+0asr—00. .

We remark that if B(r) > M (Inr)'** for some positive &, then condition oy is valid
with any positive ¢ '

DEFINITION 2. System {17) belongs to the class (A4, B} if its coefficients satisfy the fol-
lowing conditions:

1}. The elements of the matrices p{f, 2}, ai;(¢,2), 4,7 = 1, .. n, ik, 2), i = 1,...,n, e(t, z)
are measurable locally bounded functions m Sp.

2). p(t,z) is a non - singular matrix in Sp. There exist positive constants M and m such
that the norms of the matrices p(f,z) and p~(¢, z) satisfy the following inequalities:

lla(t. 2))| < M exp{mB(r}},

lo(t,2) M < MA@ m < .
3}. There exist a vector f € CN and a positive constant § such that for any ¢ € C¥ and
{t.z) e Sy

Re(p(t,z)f, ¢} 2 6A(r) llell,

{ here (-, -) denotes the scalar product in CV.)
4) ay(t,8) € L=(S7), 4,j=1,..n
5). 1Bt 2)l| < MB(r)Y2A(r)™, i = 1, ...,m; le(t, )| < MB(r)A(r)~? in Sr.

THEOREM 6. Let system (17) belong to the class (A,B). Then any positive solution
u(t, z} of the weak Cauchy problem (17),(18,), for which

T .
/dt/”u(t,a:)“ exp{—cB(ri}dz < oo
0 Re

13 egual to zero almost everywhere in Sp.

5. Comments We would like to make two remarks.

Remark 1. In the previous theorems p{t,z} is bounded &om below by the ra.d.lally
symmetric power of [z|. Let us formulate one of the statements in which the function
p(t,z) bounded from below by the function which is not radially symmetric.

THEOREM 7. Let conditions Hy hold and for some {g;}, ¢ >0,1<i<n |
plt,z) 2 M(1+a})™T (19)

B(t,2)a: < M(1+ 2%, oft,z) S M(L 42D~ (20)
Then any solution u(t,z) of the problem (15),(165) such that '

u(t, )] < K exp{k(1 +sH)¥}
with some positive constants K and k, is identically equal to zero in Sy.
~ Remark 2. The results obtained in Section 3 do not’ depend on the dimension. But
the number of space variable n plays a role if p(2, :c) tends to zero as |z:| -+ oo sufficiently

fast. Consider the exa.mpie
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EXAMPLE 3. Equation :
2" 0y = Au= 2 u+-+ 8 ug< G
has a self-similar solution
rt~tie )
w(t,z) = f(rt™9) = f ezp{wsqq"é} stz | r = |zl
0
This solution is positive for any ¢ > 0, w{0,2) =0,

=t forn =1,
zimoo |2

w(t, z)
lzi~roc ZBIZB!
w(t, z} is a bounded function for any n > 3.

::Iforanandt>O,

Let’s consider now classical solutions of the equation
plt, 2)0u = Au {21)

assuming that p{t,z) < M (1 + x”)(qmgm with some ¢ < 0.

With the help of the function w(t, z) it is easy to construct a nontrivial solution of the
problem (21}, {160}, possessing the properties:

1} for n = 1 growing as |z| with |z] — oo,

2} for n =2 growing as ln |z| with |2] - oo,

3) bounded for any n 2> 3.

This example shows that if p tends to zero as |z]97?, ¢ < 0 then in order to ensure the
uniqueness of the Cauchy problem one has to prescribe some additional conditions for |z!
large. It was shown in [8],[9],{10] that for such p the Cauchy problem for equation (21)
for n > 3 is well posed in the class of the function which tends to zero in some sense as
|#] ~» oo. Below we present two results for one and two dimensional case.

Case n= 1. We study the Cauchy problem for the equation

plt, 2)8xu = alt, z)0%u + b(t, 2)0,u + c(t, z)u. | (22)
The following assertion is valid. ' |

'THEOREM 8. Assume that |b(t,z)] < Mp(t z)(|=} + 1}, elt, :c) < Mp(t,z) in Sr. Then
any solution of the problem {21), (189) that

Jim (e e ml/lml) =9
is identically in St equal to zero. ' '
Case n==2. Let us consider the equation _
p(t,2)0u = Au+ bi(t, 2)8u + cft, z)u,z = (1 2). (23)
THEOREM 9. If conditions H, holds and (bi(t,z)z) < M(1 + 2))In(2 + 2*)p(t, 2),
{eft,z)) < Mp(t,z) in 57, then any solution of the problem (23), (18y) such that

éi‘?w(fé}?% u(t, )|/ 1n Izi) =
is identically in St equal to zero.
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An extensive bibliography is devoted to the investigation of uniqueness classes of the
Cauchy problem for parabolic equations and systems (see, for instance, [1-6], [8-12]). We
note that parabolic equations degenerating at infinity appear in applications (see, for
instance [8,9]). Propositions similar to theorem 6 are often called theorems of triviality .
They (gntmn conditions ensuring that some class of fanct:ons has no solution except for
a trivial one
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